翻訳と辞書
Words near each other
・ Remy
・ Remote Touch
・ Remote Utilities
・ Remote Video Inspection System
・ Remote viewing
・ Remote virtual media
・ Remote visual inspection
・ Remote weapon station
・ Remote Western Australia
・ Remote, Oregon
・ RemoteAccess
・ Remotec ANDROS
・ RemoteFX
・ Remotely created cheque
・ Remotely Operated Auto Racers
Remotely operated underwater vehicle
・ Remotely operated vehicle
・ Remotely triggered earthquakes
・ Remoteness
・ Remoteness in English law
・ RemoteView
・ Remoudou
・ Remouillé
・ Remoulade
・ Remoulins
・ Removable
・ Removable bolt
・ Removable media
・ Removable partial denture
・ Removable singularity


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Remotely operated underwater vehicle : ウィキペディア英語版
Remotely operated underwater vehicle

A remotely operated underwater vehicle (ROV), is a tethered underwater mobile device. This meaning is different from remote control vehicles operating on land or in the air. ROVs are unoccupied, highly maneuverable, and operated by a crew aboard a vessel. They are common in deep water industries such as offshore hydrocarbon extraction. They are linked to a host ship by a neutrally buoyant tether or, often when working in rough conditions or in deeper water, a load-carrying umbilical cable is used along with a tether management system (TMS). The TMS is either a garage-like device which contains the ROV during lowering through the splash zone or, on larger work-class ROVs, a separate assembly which sits on top of the ROV. The purpose of the TMS is to lengthen and shorten the tether so the effect of cable drag where there are underwater currents is minimized. The umbilical cable is an armored cable that contains a group of electrical conductors and fiber optics that carry electric power, video, and data signals between the operator and the TMS. Where used, the TMS then relays the signals and power for the ROV down the tether cable. Once at the ROV, the electric power is distributed between the components of the ROV. However, in high-power applications, most of the electric power drives a high-power electric motor which drives a hydraulic pump. The pump is then used for propulsion and to power equipment such as torque tools and manipulator arms where electric motors would be too difficult to implement subsea. Most ROVs are equipped with at least a video camera and lights. Additional equipment is commonly added to expand the vehicle’s capabilities. These may include sonars, magnetometers, a still camera, a manipulator or cutting arm, water samplers, and instruments that measure water clarity, water temperature, water density, sound velocity, light penetration, and temperature.
==History==

In the 1970s and '80s the Royal Navy used "Cutlet", a remotely operated submersible, to recover practice torpedoes and mines. RCA (Noise) maintained the "Cutlet 02" System based at BUTEC ranges, whilst the "03" system was based at the submarine base on the Clyde and was operated and maintained by RN personnel.
The US Navy funded most of the early ROV technology development in the 1960s into what was then named a "Cable-Controlled Underwater Recovery Vehicle" (CURV). This created the capability to perform deep-sea rescue operation and recover objects from the ocean floor, such as a nuclear bomb lost in the Mediterranean Sea after the 1966 Palomares B-52 crash. Building on this technology base; the offshore oil & gas industry created the work-class ROVs to assist in the development of offshore oil fields. More than a decade after they were first introduced, ROVs became essential in the 1980s when much of the new offshore development exceeded the reach of human divers. During the mid-1980s the marine ROV industry suffered from serious stagnation in technological development caused in part by a drop in the price of oil and a global economic recession. Since then, technological development in the ROV industry has accelerated and today ROVs perform numerous tasks in many fields. Their tasks range from simple inspection of subsea structures, pipelines, and platforms, to connecting pipelines and placing underwater manifolds. They are used extensively both in the initial construction of a sub-sea development and the subsequent repair and maintenance.
Submersible ROVs have been used to locate many historic shipwrecks, including the RMS ''Titanic'', the ''Bismarck'', , and SS ''Central America''. In some cases, such as the ''Titanic'' and the ''SS Central America'', ROVs have been used to recover material from the sea floor and bring it to the surface.
While the oil and gas industry uses the majority of ROVs, other applications include science, military, and salvage. The military uses ROV for tasks such as mine clearing and inspection. Science usage is discussed below.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Remotely operated underwater vehicle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.